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ABSTRACT

This thesis presents a criterion for use in obtaining

a "best" approximation to a certain desired sampled-data system

under conditions such that the input to the system is a non-station-

ary random signal corrupted by additive noise. The criterion is

applied to both a time-invariant system and time-varying system.

Physically realizable solutions for the optimum system are obtained

in each case.
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CHAPTER I

INTRODUCTION

Although the sampling theorem was expressed in a general

form by Cauchy* more than a century ago, sampled-data systems

received little attention until the early 1940's when radar fire-

control problems became of interest.

Sampled-data systems have come of age within the past

4'ý
decade, primarily because of the increased use of digital computers

in control systems, and the greatly expanded use of telemetry with

the associated importance given to efficient use of available

communication channel capacity.

The techniques for the synthesis of sampled-data systems

have lagged considerably behind the analogous state-of-the-art of

continuous-data systems. However, design methods developed for

continuous-data systems have been almost universally extended and

applied to sampled-data systems.

One of the first design philosophies for sampled-data

8
systems was proposed by Linvill, who viewed sampling as a form of

*Numerical superscripts refer to entries in the bibliography.
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amplitude modulation. Probably the most important philosophy was pro.

posed by Ragazzini and Zadeh, 11 who introduced the theory of the z

transform. Other basic design philosophies have been proposed by

Brown,2 who used a difference equation approach, and Smith, Lawden,

and Bailey, 1 3 who interpreted sampled-data system design as a.pre-

diction problem.

Statistical methods have played an increasingly important

role in the design of control and communications systems in the past

fifteen years. The application of statistical methods to system

design as originally prevented by Wiener 1 has been refined and

extended in many ways and by many authors.16

This thesis presents a synthesis procedure whibh may be

41 used to obtain optimum compensation for sampled-data systems with

non-stationary random inputs, the criterion for the optimization

being a mean amplitude-set-time weighted error criterion. Results

are obtained for both time-invariant systems and time-varying systems.

Solutions are presented in the form of equations which may be

synthesized by standard methods. The conditions for the physical

realization of the solutions are discussed in each case.



CHAPTER II

THE OPTDUZATION CRITERIMt

2.1 The Criterion for Continuous Systems

Murphy and Sahara1 0 have proposed, and have defined for

continuous system, an optimization criterion of rather general

form which is based upon the minimization of a function of the

system error which may be weighted with respect to err6r ampli-

tude, the relative time of the error occurrence, and the subset

of the sample space from which the error is taken. In its most

general form this criterion is

-0 O T

C =f U(x) f p(x,y) Jim~ 1.~. f "w(x,yv;T 0;t)Pi.(x,y;t)] dt dy dx, (2.1)
-T - o o--T i

0

where t is the real time variable, T0 is the length of the system

memory, x and y are the coordinates of the. error sample space,

e(x,y;t) is the system error, Fie(x,y;t)J is an amplitude weight-

ing function, w(xy;To;t) is a time weighting function associated

with the relative occurreno time of the error, p(x,y) is a proba-

bility density function associated with the error sample space, and

rm(x) is the mubset weighting Parameter.



Such a criterion is ideally suitea for use in designing

control systems which must operate over a wide range of ambient

conditions. The parameter m(x) can be varied according to the

relative importance of errors occurring under the various conditions

and then weighted by the probability that the system will be operat-

ing under these particular conditions.

2.2 Extension of the Criterion to Sampled-Data. Systems

If the system under consideration is completely sampled,

that is, if all parts of the system operate with sampled data, the

integrals in equation (2.1) may be replaced by discrete summations.

Similarly, the limiting process may be replaced with its discrete

equivalent. The criterion for sampled-data systems thus becomes

C = miPi Im 1 w(ij;NT;nT)Fte(ij;nT)). (2.2)
i=-Ij=-J N->- 2N+ln=-N

In equation (2.2) T is the system sampling interval, F•e(i,j;nT)J

is a function of the system error amplitude, w(i,J;NT;nT) is a

time weighting function, NT is the length of the system memory,

Pij is the probability associated with the jth sample point in the

ith subset of the error sample space, mi i's the weighting parameter

of the ith subset, J is the number of sample points in the largest

subset, and I is the number of subsets.

Although the summation indices n, J, and i have no physical

interpretation for negative integers for a finite process starting

at time nT = 0, the criterion is written in a symmetric form to



allow application of statistical design methods. The weighting

functions, the error, and thus the criterion are asmed to be

zero for terms arising from negative summation integers.

2.3 A Restriction

Although the amplitude weighting function may, in general,

be an arbitrary function of the error, the function

F[e(i,J;nT)] I e 2 (ij;nT) (2.3)

is chosen for use in the sequel. Certainly, this choice of amplitude

weighting will not always be the ideal in any system considered,

however, there are two compelling reasons for its 1 selection. First,

a specific function is necessary in order that the minimization

process may be carried out, and second, it is of relatively simple

form, which leads to a workable design. With this restriction the

criterion, equation (2.2) becomes

C= M i p i lim 1 11 w(i~J;NT;nT)e2(i,j;nT). (2.4)
i= I j=-Jj N->m 2N+l n=-N

The criterion defined by equation (2.4) may be considered

to be a generalization of the familiar mean-square-error criterion

Which has found much use in the design of optiuu control and

couunications system.
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The following mar. compaot forms of equation (2.4) will

often be used for brevity in writing equations in the sequel.

C (((w(iji;NTjnT)e 2 (±.aj;nT)) >n )I X

or simply

C %W (( a 2 X)J) (2.6)

The symbols ((( i represent the statistical average

or expected value of the argument taken with respect to the three

indicated indices, the argument being the quantities bbtween the

innermost 'irackets.
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CHAPTER If

SOME PRIM CONSIDUATIOUS

The basic problem considered in this thesis is the problem

of obtaining a "best" approximation to a given desired system. The

basic definitions and relationships necessary to attain this end will

be presented in this chapter.

3.1 The Model

A functional diagram of the model which will be used in

this thesis to define and clarify the mathematical conventions and

notation for the systems or processes under consideration is shown

in Figure 1, page 8.

As indicated by Figure 1, the system saipled error,

e(nT), is defined as the difference between a certain desired

output, cd(nT), and the actual system sampled output, ca(nT).

The input to the actual system, the reference input,

r(t), is assumed to consist of a signal, s(t), containing the de-

sired input information, and a noise, n(t), which is an undesirable

corruption of the input information.

The weighting sequence of the desired system is defined

to be gd(kT), while that of the actual system is defined as ga(kT).

Both the desired system and the actual system are aumued to be
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linear and finite. The weighting sequence of the desired system is

a set of linear operators vhich, when applied to the sampled signal

input, yields the desired output sequence. Similarly, the weighting

* sequence of the actual system is the set of: linear operators which,

when applied to the sampled reference input, will yield the actual

system output sequence.

The sunming device is assumed to be linear and ideal,

and all samplers are assumed to be ideal and to operate in synchronism.

The sampling frequency is assmed to be at least twice the highest

signal frequency in the system.

Although Figure 1 may be interpreted equally well to

represent either a control or a communications system,, it seems

desirable to amplify the diagram in the case of a' general closed-

loop control system. Figure 2, page 10, presents a functional

diagram of such a closed-loop or feedback control system which may

be used to represent the actual system (labeled g a(kT) in Figure 1)

in greater detail when such a system is considered.

In Figure 2, p(kT) is defined as the weighting sequence

of the system plant, and g0 (kT) is defined as the weighting sequence

of a compensating device placed in the system in order to realize

the optimum weighting sequence for the actual system with a contam-

inated input signal. The symbols o(nT) and y(nT) denote the output

sequences of the compensating device and the system plant respective-

ly. All assumptions made with reference to Figure 1 may also be

applied to Figure 2.
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3.2 The Convolution Sumation

In analogy with the convolution integral which expresses

the relationship between the input and output signals of continuous-

data systems, a convolution sunmation may be defined which relates

the input and output sequences of linear, constant parameter sampled.

data systems. Using symbols defined with reference to Figure 1, page 8,

the following convolution sumations can be written.

cd(nT) = X gd(nT- kT)s(kT) (3.1a)

or

cd(nT) = s(nT- kT)gd(kT) (3.1b)

d k= -

Although it is assumed that most systems or processes

to be considered are of the so-called terminal classification and

therefore have a finite memory and operate with sets of signals

which are all members of finite sample space's, the limits of summation

in equation (3.1) may be extended to infinity as indicated since the

additional terms created are all zero and therefore contribute

nothing to the sums.

3.3 The Weikhted Second-Order Correlation Sequence

Murphy and Bold9 have defined weighted two-space correlation

functions for continuous stationary signals, and Murphy and Sahara1 0

have defined weighted second-order correlation functions for continuous
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non-stationary signals. In analogy with fhese definitions, weighted

second-order autocorrelation sequences can be defined. Using symbols

which were defined with reference to Figure 1, page 8, the weighted

second-order autocorrelation sequence of the reference input with re-

spect to the weighting function w(ij;NT;nT) is

Owr(kT9lT) = Jim I I ((w(ioj;NT;nT)r(nT+kT)r(nT+lT) )4. (3.2)
I-> ~2N+l n=--

In a similar manner the weighted second-order cross-

correlation sequence between the reference input and ,the signal

input with respect to w(i,J;NT;nT) is defined as

wr5 kTlT I ii 1 ((w(i,3;NT;nT)r(nT+IcT)s(nT+lT) )X*. (33
N-> * 2N+l n=--

In equations (3.2) and (3-3) Ow represents the weighted second-

order correlation sequence of the signal or signals identified by the

subscripts appurtenant to the symbol.

3.4 The Pulse-Spectral Density

The spectral density of a continuQus signal is defined as

the Fourier or Laplace transform of the autocorrelation function

of the signal. The discrete equivalent of this statement defines

the pulse-spectral density of a sampled signal as the two-dimensional

z transform of the autocorrelation sequence of the signal.

The relationships between the weighted second-order

autocorrelation sequence and the weighted pulse-epectral density of
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the sampled reference input are

I-r.(z1,z2) = Wk 40 OcT•- , ,T) z1-k52.1 (3.4a)

and

•~ ~ ~ zk •,(i,),',1 dzl dz (3.4b)
O wrr (kT,lT)=(~ 1 )wrZ92 If111 z s2 (.b

2 1

The weighted pulse.cross-spectral density is defined in a similar

manner:

lwrs(z1tz2) 1=- k.,lT) zl-Z2" (3.5a)I= - k=-

wr(kTIT) = ( 1 ) z ' dZdz (3.5b)
Owrs 2"~J A~ A wr.sZl'z2 1 2  d 1 d 22 i1

In equations (3.4) and (3.5) j represents the weighted pulse-spectral

density of the signal or signals identified by the subscripts

appurtenant to the symbol. The symbols z I and z. are the complex

variables of the four-dimensional z transform space. The integration

contours A and A2 are the unit circles in the z and z2 planes

respectively.

3. 5 Some Basic Relationships

This section will present in mathematical form the basic

relationships between the various signalsand components of the



system represented by the model diagrammed in Figures 1 and 2,

pages 8 and 10.

With reference to Figure 1 and the associated definitions of

Section 3.1, the following relations can be written.

e(nT) = cd(nT) - ca(nT) (3.6)

r(t) = s(t) + n(t) (3.7)

Since sampling is a linear operation, the sampled input to the actual

system is

r(nT) s(nT) + n(nT). (3.8)

Following the definition of convolution swanations of Section 3.2,

the actual system output may be writtenI
ca(nT)= 9 ga(nT-kT)r(kT) (3.9a)'

or

Ca(nT) = r(nT-kT)gb(nT). (3b)
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Substitution of equations (3.1b) and (3,9b) into equation (3.6)

yields the relationship between the system sampled error and the

sampled reference input and the sampled signal input:

e(nT) Es(nT-kT)gd(kT)-r(nT-kT)ga(kT)]. (3.10)
k=-m

This result also indicates the effect of the system weighting-

sequences on the system error.

Referring now to Figure 2 and the associated definitions

of Sections 3.1 and 3.2, these relationships may be noted.

a (nT) = r(nT)-ca(nT) (34J1

X g(nTk)a (3)

y(nT) = (nT-kT)a(kT) (3.12a)

or

y (nT) a , u(nT-kT)gc(kT) (3.12b)
k= -

Ca (nT) = • p(nT-kT)Y(kT) (3.13a)
k-=

or

ca (nT) = X Y(nT-kT)p(kT) (3.13b)
k= O
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Combining equations (3-13a) and (3-12b) yields

ca(nT) : p(nT-kT) Z a(kT.lT)go(1T). (3.14)k=-m, lUr

Substituting equation (3.11) into equation (3.14) yields

ca(nT) I p(nT-kT) g0 (lT)[r(kT-1T)-ca (kT-lT)]. (3.15)
k=-GT 1=-U

Equation (3.15) indicates the implicit relationship between the

input and output of the closed-loop system and the weighting

sequences of the system components. It should be noted that

this equation cannot, in general, be solved explicitly for the

output sequence due to the different arguments of the output

sequence as it appears in the equation.

I



CHAPTE IV

THE OPTIMUM SYSTEK

The criterion developed in Sections 2.2 and 2.3 will

be applied in this chapter to the model described in Section 3.1

with the aim of finding an optimum syutu° The optimum lystem

is defined as the physically realizable system which has for its

weighting sequence, or equivalently, its pulse-transfir function

that sequence or function which minimizes the criterion, equation

(2.4). Solutions for this function will be obtained and the

conditions for their physical realization will be described.

If the system under consideration is a closed-loop control system

as shown in Figure 2, page 10, knowledge of the optimum system

weighting sequence or transfer function and the conditions on

its realizability allows the synthesis of a compensating device

to correct the system plant in such a way as to achieve the optimum

system.

4.1 Time-Invariant Systems

In this section systems with plants which are invariant

with respect to time will be considered.

Again 'with reference to Figure 1, page 8, substitution

of equation (3.9b) into equation (3.6) and the result into equation
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(2.4) yields

I J N c
C M I P~ i j a"', 1.. Z [cd (nT)-2cd(nT) I g,(kT~r(nT-kr)i=- I J=- i N- D2+ n= - N k=-

+ X ga(kT)r(nT-kT) ga(IT)r(nT-lT)). (4.1)

Comparison of this result with the definitions of Section 3.3

suggests that equation (4.1) can be written as

C = wCdd(kT,!T) - • g(hT) 0w r(kTlT-hT)

00

- •, g(hT) •wcr (IT,kr<-hT)÷ • g(hT)

d= h= -

I . g(fT) •wrr(kT-hT'lTfT)]T (4.2)
f=- IkT=lT=O

The interchange of the operations of averaging and summation is

usually justifiable in equations describing physical systems.

This is discussed in greater detail in Chapter V. Equation (4.2)

shows that the optimization criterion is completely determined when

the unit impulse response of the system and the weighted second-

order correlation sequences of the reference input and the desired

output are known.

I+
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The pulse-transfer function which minimises the right

side of equation (4.2) may now be found throuh application of

the methods of variational calculus.

Let X(kT) be defined as an arbitrary, physically realizable

weighting sequence satisfying the equation

X(kT) = 0 (4.3)

for kT 0 and T > NT, where NT is the length of the system memory,

and which has no diecontinuities at either kT a 0 or kT a NT.

Now let

g(kT) = g(kT) + ,,(kT), (4.4)

where 6 is an arbitrary small real number. Equation (4.2) now be-

comes

C + AC = d T - 1 Eg(hT) + 6)'(hT)] #wc r(kTlT-hT)
AC= ~wdcd~k~ h=zm O dr

- a [g(hT) + 6)(hT)) #wcdr(lT,kT-hT) + h C g(hT) + XX(hT)]h=cdr h=- - gh)" Xh)

. g(fT) + 6X(fT)] &.. kT-hT,lT-fT)

"- IkT=lT=O (4.5)

Subtracting equation (4.2) from equation (4.5) yields the first

variation of C as

0J
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AC 1X 6X(hT)O,,,0 r(kT~lT-hT) - 6k(hT)~ r(lTgkT-hT)

+ -•-g(hT)6X(fT)+g(fT) 61(hT)

+ 62K (hT)X(fT)] 0, ,(kT-hT, lT-fT) kI0 46

The neqessary condition for an extremum of C is that

IT6 J6=0 =o. (4.7)

Applying this to equation (4.6) yields

A C ) (hT) wcd (kTl T-hT)•16=0 h--

hd- h=- f=

+ g(fT)X(fT)] 0w r(kT'hT'T'fT) T =0. (4.8)

Again, the interchange of operations is usually justifiable in

physically based equations. Equation (4.8) may be written in a

more meaningful form as
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I XhTE[Oc q kor Th + Ow (lT,kT-hT)]

-X g(hT) X .(fT) Owr(lcT-hT,1T-fT)

) X(hT) g(fT) Orr(kT-rhT,lT-fT)( 0. (4.9)
-h=- ~ U?? )~ l

Interchanging the order of suimation in the first double swunation.

termi yields

f h X. (hT) ( #we r (kT,1T-hT) + #wc r (1TglcT-hT)3

- 9hT) g(fT) Owr(lT-hTgkT-fT)

Z X(hT) I g(fT) Owr(kT-hT,1T-fT)?0 4.0

which may be simplilfied to

SX(hT)4 g(fT) C(wr(1T-hT,kT-fT) +* Or(kT-hTtlT-fT)l
h= -do (f=-=

- k wcr- (TvkT-hT) 0.,4.1
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In order for the extremun deteruined by (L.7) to be a

minimum, it is sufficient that

a 10C 0. (4.12)
a 62 6.o

The second partial derivative of the first variation of C with

respect to 6 is

6 6=0 h=-- -kT=lT=O. (4.13)

Writing this result with wrr expanded yields

S1 - 2 )(hT) ? lii (i,; ;nT)

I0 V.. Ii LI' iJNa 625-- h= :f- nf-N

•r(nT-hT)r(nT-fT) > . (4.14)

Changing the order of operations yields

-2 16=0 N->- 2N+1 n= -i

h=- (hT)r(nT-hT) (f)r(nT-T).) (4.15)
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Equation (4.15) is of the form

=24 Ii N
2 = i w(i,J;NT;riT)m2(nT)9 (4.16)

a62 6=0 N->-, 2N+' n=-N

where m(nT) is the response of a system with weighting sequence

X(kT) to an input r(nT). In order for-the condition of equation

(4.12) to be satisfied it is sufficient, but not necessary that

w(i,J;NT;nT) >0, -- < nT s * (4.17)

This restriction does not place an especially severe limitation

on the choice of the time weighting function w(i,,J;NT;nT). It

does, however, exclude certain weighting functions which xiay other-

wise be acceptable.

With a choice of time weighting function which satisfies

equation (4.17), the solution for the optimum system can be carried

* out. The function which minimizes the system error must cause the

first derivative of the variation of the criterion to be zero for

an arbitrary selection of X(hT), subject, of course, to the restric-

tion of equation (4.3), so

gZ g(fT) [0wr (lT-hT,1cT-fT) + Owrr(kT-hT~lT-fT)l

- wdr(e hT) , (lT,kT-hT = 0 (4.18)
"O kT=4IT=O
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Taking the two-dimensional z transform of equation (4.18) yields

f D z~ k _ g(fT) [#.r(1T-hT,1cT-fT) + Or~ThgTf~

- l- E z 2 k [0c wer (k~ThT) -~r(lTtkT-hT) 0 (4.19)
dz -C k=-C erk lT=O

Changing the order of sumtation yields

aDg(fT) )z (z hTz -fT + wr11'2hzf]
I " zwrr'12 1, ~2 m r21

- ~ h '0d~ls~l -I cdl2 Oh<T (4.20)

which may be simplified to

IG~z2) .(zlz2)- kwc dr(z2 'zl)]z 1hT

+ [0(h ) fwrr(s2,Zi) d 05M94 0. (4.21)

The inverse two-dimensional z trawnsfo uain(4.21) is

(. £[(8)15 1Z'KS-hTz h".%i f-l dz1d
f JI [G- 2 1.rlz2) -vdrz2 ll Ii1 z 2
421A



25

+ f2 f2 •( (zl) 'wrr'2•( lzl)

"- 1dr(zlu%2)jz2"hTz7h'Iz 2fl f1 dzI2,10•T =0 (4.22)

It can be shown that the first double integral cannot be the negative

of the second. The only admissible solution to this equation is,

therefore,

G(z2) fwrr(z'r2) - lwcdr(2, 0 (4.23)

and

o I) rr(52,zl) - •'Crdr(zl,' 2 ) - 0 (4.24)

in the region _OMhi . Solving for 0(zI) yields a solution for the

optimum pulse-transfer function of extremely siMple form:

0(z1 ) = l,•dr(z'z2) (4.25)

4.2 Physical Realizability of Solution

Equation (4.25) represents the optimum pulse-transfer

function for the system in the sense of the criterion defined by

equation (2.4), without regard for physical realizability. The

result assumes that the weighted pulse-spectral density of the
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reference input, and the weighted cross-pulse-spectral density for

the desired output and the reference input are known.

Most functions of physical origin possess L4place transforms

and it is known that a z transform exists for any function which has

a Laplace transform. The optimum pulse-transfer fuAction may. there-

fore be found if the weighted autocorrelation sequepce of the refer-

ence input, and the weighted cross-correlation sequence between the

desired output and the reference input are known, rather than the

corresponding pulse-spectral densities.

Two conditions must be satisfied in order for the solution,

equation (4.25), to be physically realizable. They are

g(kT)= 0 for kT < 0 (4.26)

and

ln g(kT)= o (4.27)
k'T 4'm

For these conditions to be satisfied G(zl), which is in

the form of a rational polynomial in zl, must exhibit no positive

power of z1 when expanded in a power series, and must have no poles

outside the unit circle in the complex z1 plane.

If there are one or more poles of G(aI) present outside

the unit circle a heuristic argument similar to that given by Bode
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and Shannon1 may be used to find a form of G( wc) whih is physically

realizable.

Let the ordinary pulse-spectral density of the reference

input be written as

Ir, (z1rz 2 ) = Iri (zl,"2) ° ( lr2) (4.28)

where Ji (zlpz 2 ) has poles only inside the unit circles in the

zi and z2 planos and Irr (zlz 2 ) has poles only outside the unit

circles. The input r(nT) is first converted to a sequence of

sampled white noise by passing it through a unit with the physically

realizable transfer function

G1 (zlz 2 ) 1 (4.29)
Err ('l~z2)

The white noise must then be passed through a physically unrealizable

unit with the transfer function

"o2 (zlz 2 ) = z (z1 ) (4.30)G,. (zlz2)

to obtain the optimum response. This optimum response is the sum

of two statistically independent componentst 1) a completely

predictable component due to all of the samples of white noise

which have previously occurred and the pulse (if one exists) that

is simultaneously occurring, and 2) a completely unpredictable
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component due to pulses of white noise which will occur in the

future.

On the average, the best physically realizable measure

of the second of these components is zero. Therefore, the optimum

physically realizable pulse-transfer function in obtained by-making

0, kI•O
g(kT) z'ELIi( ,z 2 )o(z1 )], Ict). (4.31)

By combining equations (4.30) and (4.25) it is then found that the

optimum physically realizable pulse-transfer function is

G(zl)r 1 z 1 - dzk.
1 Z'r (z l'z 2 ) k=O 27Tj f lwrr(z 2 zl) (4.32)

Assuming the system plant is prescribed in physical form,

knowledge of the optimum physically realizable pulse-transfer

function of the system allows synthesis of the optimum compensator

for the system by standard methods.

4.3 Time-Varying Systems

This section is concerned with systems in which the plant

varies as a function of time. Since the method of solution of

Section 4.1 used the artifice of converting to the complex z-plane

and thence back to the time domain, this method may not be applied

to a system with time dependent components. A method of solution

will be described in this section which requires only time-domain

operations.
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The procedure is similar to that described by Cruz5 which

makes use of a matrix characterization of the system in the time

domain. In particular, the system is described by a transmission
6

matrix presented by Friedland. A linear system (either time-invariant

or time-varying) may be characterized by a lower triangular matrix.

For example, if a system has an input x(k), a weighting sequence

g(n,k) and an output y(n), the output matrix may be written in terms

of the input matrix and the system transmission matrix as follows.

Y - OX (4.33)

or

y(O) g(OO) 0 . . . o x(o)
y(F ) g(.,o) g([,l) . . . 0 x(I )

Y(n) g(n,o) g(n,l) . . . g(n,n) x(n) (4.34)

All systems which are non-predicting, and therefore physically

realizable, have transmission matrices of the form of the matrix

G above. Note particularly that g(n,k) = 0 for k > n.

Since in the present investigation, the output is of

interest at sampling instants only, the signals and components of

the system may be described conveniently and completely by matrices.

Let R be defined as the reference input matrix, S as the signal in-

put matrix, and N as the noise matrix. Equation (3.8) can be
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written in matrix form as

R S + N (4.35)

or

r(i,J;o) 1S(i J;0) 1n(ii ;0)1
r(i,J;T) s(iJ;T) n(ij;T)

L i ,3;n L! 3n)j L i(3n~
The system er r matrix is defined as

"e(i,J;O)

E - e(i,J;T)

e(i, j; T ; n.3)

The actual system output matrix is defined as

Ca M a (iJ;O)"
Ca(i,J;T)

Ca(i,J;nT)J 
(4.38)

The desired system output matrix is defined as
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C d -a(it•T)

Cd (i'ý;nT) (41,39)

The transmission matrices of the actual system and the desired

system are defined as

ga(O,O) 0 ... 0
0 a ga(T,0) ga(TT) . . . 0 1

g (nTO) g (nT,T) . .a ((nT ) (4.40)

and

9d(0,0) 0 ... 0
Gd gd(T,O) gd(T,T) ... "0

gd(n(,O) gd(nT,T) . g.(n .nT) (4.41)

Similarly the plant matrix and the compensator matrix are defined,

respectively, as

p(OO) 0 0.. 0
---- p(T,O) p(T,T) ... 0

p(nT,O) p(nT,T) . . .T,nT (4.42)

and

g (0,0) 0 ... 0
= gc(T,O) g0 (T,T) .. 0

g (nT,O) g (nT,T) • . • g0 (nT,nT) (4.43)
IJ
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With reference to Figures 1 and 2, pages 8 and 10, and associated

definitions, the following matrix relationships are evident.

E C d -C a (4.44)d

Cd = GdS (4.45)

C G aR = Ga(S + N) (4.46)

Ga = (I+ PG )l PG (4.47)

The optimization criterion, equation (2.4), may be expressed in

matrix form as follows.

C0= (((Et W]E X),X 4.4i

The time-weighting matrix, W, is defined as

"w(i,j;NT;O) 0 . . . 0
W 0 w(i,J;NT;T) ... 0

0.L. w(i,J;NT;nT)j (4.49)

The argument of the right side of equation (4.48) may be expressed as

Et WE = (Cd - Ca)tW (Cd - Ca). (4.50)
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Expansion of this matrix yields

Et (G - ds - 0. R)tW((S , 0R), (4..1)

EtWE =st(Gd - oa)t - s (As. )

and

E•d- so a d o < a aa~.•t.
EtWE S t(Gd -oG.t(Gd -0G )5- A atWO aN

St(Gd - Ga)raN - NtGtW(G - GaS ( )

d ) a d a( 3

If the signal and noise are statistically independent and if the

noise is assumed to have zero mean, the last two terms drop out

upon averaging. The criterion may therefore be written as

C = (((S t Gd - G abt(Gd - Ga)S + ANatWGa flXaN (4.54)

Let the matrix (Gd - Ga) be defined in terms of general elements as

(Gd - Ga) = Ge = geapqJ (4.55)

Sthe matrix 0a be defined as

oa = C apq (4.56)
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and the matrix W be defined as

W = CwJ] (4.57)

Let the matrix of the product GetWGe be defined in terms of the

elements of the product as

etWe = [O] (4.58)

and the matrix of the product Gat WOWa be defined as

GatWGa[Bp] (4.59)

In each case above p and q are non-specific row and column indices

respectively. The matrix product GeIWGe may be expressed in terms

of the matrix elements as

= n+l n+l p 1 wn+l,
pq vl I4 egpu wuv e q = 1 . . . n+l. (4.60)

It should be noted that W is a diagonal matrix of order n+l, Cegvq]

is a lower triangular matrix of order n+l, C epu] = [egvqtI and

[ pq] is real symmetric matrix or order n+l. Similarly for the

product Ga Ga,
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Opq =% U agpu 'uv agvq, P - n÷Zv

q=1. . n+l. (4.61)

Consider now the products StoetweS and NtOatW~aN. Both of these

products are in the form of a one-element matrix, each being the

product of a square matrix premultiplied by a row matrix and post-

multiplied by a column matrix. In terms of the matrix elements the

first of these products is

"Fn+l n+l1

StGt teS = [, kl sn x s s] (4.62)

Since the S matrices consist of only one row or column,equation

(4.62) may be written as

StoetwGe Si n+19 y s 1]. (4.63)

Writing equation (4.63) so that the elements of the S matrices are

displayed explicitly rather than by their position,

StGetWG S = sn(xTT) L s(YT-T

Similarly,

Nt ratWG.N n n(x:TT) 0 XY n(yT-T)] (4.65)



36

Equation (4.64) can be written

te S Fn+l n+l n+l n+l
S Gewu =~TT X g xi WU *gVY a(yT-T) (4.60)

X V74: Ua

Commuting the elements of the usmmand yields

A W nti n+l n+l n+l '~TT~u )IT 4.7

e e l I I egxu egvy uv

Similarly,

NtG t WGa N gy n(xT-T)wu n(YT-T)] (4.68)x=l v=l u=l ag avy

As before, the weighted statistical autocorrelation sequences of the

signal and noise are defined, respectively, as

OW (xT,yT) =(((s(x'r-T)w(.xT-T)s(yT-T) )n) (4.69)

and

iwnn(XT,yT) = (((n(xT-T)w(xT-T)n(y'T-T) (4.70)

Using equations (4.69) and (4.70), the criterion, equation (4.54),

may now be written

n+l n+l n+l n+l
C = ny~s x~T laay~(4.71)
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or

n+l n+1

y1 l x=.vl u1 (dg~xg-av

(4.72)
In view of the fact that [.e.u and [agxu] are upper triingular

matrices, and [egy and [ag are lower triangular matrices,

equation (4.72) may be written as

n+l n+l + +

0= ~x~2v=y u-x

The criterion is now in a form which can be optimized with respect

to the actual system transmission matrix. This is done by taking

the partial derivative of C with respect to agxu and equating the

result with zero in the usual manner.

acn.l +1+
a4) g I I I I~ 1(ga-9d)Vy OW5 5 ('CTiYT)+a~vy Ownn'XTOY = 0

a x Y-1 Xlv~y u-x
(4.74)

This result is independent of u, and may be written as

n+l n+l n+l

Y, 71 1 ag~ s(X'T + OWnn TY ~ - d(vy Y = 0

(4.75)
A solution for the elements of the optimum system transmission
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matrix is therefore

g d~vv Cwss (T,) x = 1 . . . n+l,
agvy wss (xTyT)+Own (xT,yT) ' y = 1 . . . n+l,

v = y. n+l. (4.76)

Equation (4.76) is in the form of a set of algebraic

equations which may be solved for the elements of the optimum

system transmission matrix. Since the matrix is a lower triangular

matrix of order n+l, the complete solution for its elements will

require the solution of + n+l) = f(n +3n:2)equations.

4.4 Physical Realizability of the Solution

The solution, equation (4.76), assumes the transmission

matrix of the desired system, the weighted autocorrelation sequence

of the signal, and the weighted autocorrelation sequence of the

noise are known.

12Salzer has discussed the requirements for synthesizing

a function by means of a digital computer with a linear program.

Each variable in equation (4.76) is known a priori, and only the

operations of addition, multiplication and division are necessary

to solve for agv, the general element of the optimum system

transmission matrix. Since the plant is assumed to be in physical

form, the compensation matrix may easily be computed and synthesized.



CHAPTER V

SUMMARY AND CONCLUSIONS

This thesis has presented a mean amplitude-set-time

weighted error criterion for use in synthesizing optimum sampled-

data systems. Procedures for application of the criterion to both

time-invariant and time-varying systems were developed. In each

case a physically realizable solution for the optimum system was

derived.

Although the square of the system error was used in this

thesis for 'the amplitude weighting function, it was pointed out

that this selection is not the best in many cases. A similar prob-

lem arises in the selection of the time-weighting function and the

subset-weighting parameter. There is no general procedure known

which will take the place of a designer's experience in the selec-

tion of these weighting functions. Many factors, among them the

characteristics and complexity of the system, the characteristics

of the inputs to the system, and cost, must be considered in making

the decision on the type of weighting function to be used. A

logical study of these factors is a desirable subject for further

work.
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Several times in the process of solving for the optimum

systems it was necessary that orders of summation or integration

be interchanged. The necessary and sufficient condition for this

operation to be permissible is that the summations or integrations

involved be absolutely convergent in the region of interest. To

show this rigorously would entail detailed, specific knowledge and

consideration of every function of interest in the design of the

system. It is sufficient for the purposes of this thesis to simply

state that most summations and integrations arising in connection

with physical systems are absolutely convergent.

Another operation which was performed without formal

justification was the interchange of summations and averages.

This operation is permissible if the average of the individual

factors of the summand has a finite value.

This thesis was concerned only with completely sampled

systems. An extension of the work herein to systems operating with

both continuous and sampled data is surely possible through applica-

tion of the modified z transform. Another approach would probably

be necessary, however, if variable-rate sampled-data systems or

digital-information systems were to be considered.
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